Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways
Autor: | Fuxing Song, Yongfang Yuan, Rong Wang, Shengnan Li, Yanqiu Gu, Bin Wu |
---|---|
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Pharmacology Chemistry Pharmaceutical Science CCL4 Caspase 3 Chronic liver disease medicine.disease 03 medical and health sciences 030104 developmental biology 0302 clinical medicine 030220 oncology & carcinogenesis Drug Discovery medicine Cancer research Hepatic stellate cell Liver function Signal transduction Protein kinase B PI3K/AKT/mTOR pathway |
Zdroj: | Drug Design, Development and Therapy. 13:1889-1900 |
ISSN: | 1177-8881 |
Popis: | Background: Liver fibrosis occurs due to chronic liver disease due to multiple pathophysiological causes. The main causes for this condition are chronic alcohol abuse, nonalcoholic steatohepatitis, and infection due to hepatitis C virus. Currently, there is more and more information available about the molecular as well as cellular mechanisms, which play a role in the advancement of liver fibrosis. However, there is still no effective therapy against it. Purpose: In order to find an effective treatment against liver fibrosis, our study explored whether salvianolic acid A (SA-A), a traditional Chinese medicine extracted from the plant Danshen, could effectively inhibit the liver fibrosis, which is induced by CCl4 in vivo. Methods: The effects of SA-A were evaluated by assessing the parameters related to liver fibrosis such as body weight, histological changes, and biochemical parameters. Thereafter, the related protein or gene levels of P13K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways were determined by western blotting, real-time PCR or immunohistochemistry staining. Results: According to the results of our study, SA-A could reduce liver fibrosis by inhibiting liver function, liver fibrosis index, collagen deposition, and improving the degree of liver fibrosis in rats. Mechanistically, the PI3K/AKT/mTOR signaling cascade was inhibited by SA-A to prevent the stimulation of hepatic stellate cell, as well as the synthesis of extracellular matrix, and regulated Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways to prevent hepatocyte apoptosis. Conclusion: The novel findings of this study suggested that SA-A could reduce liver fibrosis and the molecular mechanisms behind it are closely associated with the regulation of PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. |
Databáze: | OpenAIRE |
Externí odkaz: |