The Deviance Information Criterion in Comparison of Normal Mixing Models

Autor: Joanna J. J. Wang, Thomas Fung, Eugene Seneta
Rok vydání: 2014
Předmět:
Zdroj: International Statistical Review. 82:411-421
ISSN: 0306-7734
DOI: 10.1111/insr.12063
Popis: Summary Model selection from several non-nested models by using the deviance information criterion within Bayesian inference Using Gibbs Sampling (BUGS) software needs to be treated with caution. This is particularly important if one can specify a model in various mixing representations, as for the normal variance-mean mixing distribution occurring in financial contexts. We propose a procedure to compare goodness of fit of several non-nested models, which uses BUGS software in part.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje