The Deviance Information Criterion in Comparison of Normal Mixing Models
Autor: | Joanna J. J. Wang, Thomas Fung, Eugene Seneta |
---|---|
Rok vydání: | 2014 |
Předmět: |
Statistics and Probability
business.industry Model selection Machine learning computer.software_genre Bayesian inference Variance-gamma distribution Deviance information criterion symbols.namesake Software Goodness of fit Statistics symbols Artificial intelligence Statistics Probability and Uncertainty business computer Mixing (physics) Mathematics Gibbs sampling |
Zdroj: | International Statistical Review. 82:411-421 |
ISSN: | 0306-7734 |
DOI: | 10.1111/insr.12063 |
Popis: | Summary Model selection from several non-nested models by using the deviance information criterion within Bayesian inference Using Gibbs Sampling (BUGS) software needs to be treated with caution. This is particularly important if one can specify a model in various mixing representations, as for the normal variance-mean mixing distribution occurring in financial contexts. We propose a procedure to compare goodness of fit of several non-nested models, which uses BUGS software in part. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |