Lithium battery aging model based on Dakin’s degradation approach

Autor: Jean-Yves Deletage, Olivier Briat, Jean-Michel Vinassa, Issam Baghdadi, Philippe Gyan
Rok vydání: 2016
Předmět:
Zdroj: Journal of Power Sources. 325:273-285
ISSN: 0378-7753
Popis: This paper proposes and validates a calendar and power cycling aging model for two different lithium battery technologies. The model development is based on previous SIMCAL and SIMSTOCK project data. In these previous projects, the effect of the battery state of charge, temperature and current magnitude on aging was studied on a large panel of different battery chemistries. In this work, data are analyzed using Dakin’s degradation approach. In fact, the logarithms of battery capacity fade and the increase in resistance evolves linearly over aging. The slopes identified from straight lines correspond to battery aging rates. Thus, a battery aging rate expression function of aging factors was deduced and found to be governed by Eyring’s law. The proposed model simulates the capacity fade and resistance increase as functions of the influencing aging factors. Its expansion using Taylor series was consistent with semi-empirical models based on the square root of time, which are widely studied in the literature. Finally, the influence of the current magnitude and temperature on aging was simulated. Interestingly, the aging rate highly increases with decreasing and increasing temperature for the ranges of −5 °C–25 °C and 25 °C–60 °C, respectively.
Databáze: OpenAIRE