MODIFIED GEOMETRICAL METHOD OF HUMAN BLOOD FLOW PARAMETERS DETERMINATION BY DOPLER ULTRASOUND DIAGNOSTICS
Autor: | R. V. Voloshin, K. V. Avdeenko, S. K. Meshaninov |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences). 1:93-97 |
ISSN: | 2617-8389 2519-2884 |
DOI: | 10.31319/2519-2884.32.2018.172 |
Popis: | The results of the development of a modified geometric method for ultrasound Doppler study of human vessels have been presented. Numerical modeling of the Doppler signal spectrum and testing, as well as experimental testing of the modified geometric method, have been realized, which convincingly proved the advantages of the developed method to the already existing ones. To date, the scope of ultrasound medical diagnostic equipment is constantly expanding. At the same time, ultrasonic techniques do not replace traditional diagnostic methods, but only refine and complement them. Modern complex diagnostics of vascular diseases is based on the common use of radiation methods and ultrasound diagnostics. However, ultrasound Doppler blood flow in the arteries occupies a leading position as the most mobile method of dynamic monitoring and monitoring of blood supply to patients. Interest in the application of ultrasound in medicine is due to the possibility of active action on living tissue, as well as the information acquisition about the tissues themselves. Echography allows you to get information not only about all organs of the human body, but also about their functions, to visualize many pathological processes and their formation in the body. Ultrasonic methods are very informative means for studying the structure of biological tissues and the physiological processes occurring in them. Unfortunately, the current situation in the field of vascular diagnostics is such that existing Doppler methods for finding the maximum spectrum frequency, some of which have been described above, do not take into account the influence of these effects, which leads to incorrect results: errors in determining the maximum frequency of the spectrum lead to a large error in calculation of diagnostic indices, and the result of this is an incorrect making out of the diagnosis. In this regard, the development of the acoustic Doppler-study method of human blood flow parameters is important and timely. |
Databáze: | OpenAIRE |
Externí odkaz: |