Characterization of fractional maximal operator and its commutators on Orlicz spaces in the Dunkl setting

Autor: Yagub Y. Mammadov, Fatma Muslumova, Vagif S. Guliyev
Rok vydání: 2020
Předmět:
Zdroj: Journal of Pseudo-Differential Operators and Applications. 11:1699-1717
ISSN: 1662-999X
1662-9981
DOI: 10.1007/s11868-020-00364-w
Popis: On the $${\mathbb {R}}^{d}$$ the Dunkl operators $$\big \{D_{k,j}\big \}_{j=1}^{d}$$ are the differential-difference operators associated with the reflection group $${\mathbb {Z}}_2^d$$ on $${\mathbb {R}}^{d}$$ . In this paper, in the setting $${\mathbb {R}}^{d}$$ we find necessary and sufficient conditions for the boundedness of the fractional maximal operator $$M_{\alpha ,k}$$ on Orlicz spaces $$L_{\varPhi ,k}({\mathbb {R}}^{d})$$ . As an application of this result we show that $$b \in {\textit{BMO}}_{k}({\mathbb {R}}^{d})$$ if and only if the maximal commutator $$M_{b,k}$$ is bounded on Orlicz spaces $$L_{\varPhi ,k}({\mathbb {R}}^{d})$$ .
Databáze: OpenAIRE