Frobenius Differential-Algebraic Universums on Complex Algebraic Curves

Autor: Yu. P. Razmyslov, O. V. Gerasimova
Rok vydání: 2018
Předmět:
Zdroj: Moscow University Mathematics Bulletin. 73:131-136
ISSN: 1934-8444
0027-1322
DOI: 10.3103/s0027132218040010
Popis: In terms of differential generators and differential relations for a finitely generated commutative- associative differential C-algebra A (with a unit element) we study and determine necessary and sufficient conditions for the fact that under any Taylor homomorphism $$\widetilde \psi $$ M: A → C[[z]] the transcendence degree of the image $$\widetilde \psi $$ M(A) over C does not exceed 1 $$\left( {\widetilde \psi M{{\left( a \right)}^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} } \right)\frac{{{z^m}}}{{m!}}$$ , where a ∈ A, M ∈ SpecCA is a maximal ideal in A, a(m) is the result of m-fold application of the signature derivation of the element a, and ψM is the canonic epimorphism A → A/M).
Databáze: OpenAIRE