Frobenius Differential-Algebraic Universums on Complex Algebraic Curves
Autor: | Yu. P. Razmyslov, O. V. Gerasimova |
---|---|
Rok vydání: | 2018 |
Předmět: |
General Mathematics
Image (category theory) 010102 general mathematics Transcendence degree Epimorphism 01 natural sciences Combinatorics 0103 physical sciences Maximal ideal Homomorphism 010307 mathematical physics Algebraic curve 0101 mathematics Signature (topology) Unit (ring theory) Mathematics |
Zdroj: | Moscow University Mathematics Bulletin. 73:131-136 |
ISSN: | 1934-8444 0027-1322 |
DOI: | 10.3103/s0027132218040010 |
Popis: | In terms of differential generators and differential relations for a finitely generated commutative- associative differential C-algebra A (with a unit element) we study and determine necessary and sufficient conditions for the fact that under any Taylor homomorphism $$\widetilde \psi $$ M: A → C[[z]] the transcendence degree of the image $$\widetilde \psi $$ M(A) over C does not exceed 1 $$\left( {\widetilde \psi M{{\left( a \right)}^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} } \right)\frac{{{z^m}}}{{m!}}$$ , where a ∈ A, M ∈ SpecCA is a maximal ideal in A, a(m) is the result of m-fold application of the signature derivation of the element a, and ψM is the canonic epimorphism A → A/M). |
Databáze: | OpenAIRE |
Externí odkaz: |