Equiconvergence of Spectral Decompositions for Sturm–Liouville Operators: Triples of Lebesgue Spaces
Autor: | I. V. Sadovnichaya, Artem Markovich Savchuk |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Lobachevskii Journal of Mathematics. 42:1027-1052 |
ISSN: | 1818-9962 1995-0802 |
DOI: | 10.1134/s1995080221050164 |
Popis: | The paper deals with the Sturm–Liouville operator generated on the finite interval $$[0,\pi]$$ by the differential expression $$-y^{\prime\prime}+q(x)y$$ , where $$q=u^{\prime}$$ , $$u\in L_{\varkappa}[0,\pi]$$ for some $$\varkappa\geq 2$$ , and arbitrary regular boundary conditions. Consider two such operators with different potentials but the same boundary conditions. We prove that the difference between spectral decompositions $$S_{m}^{1}(f)-S_{m}^{2}(f)$$ of this operators tends to zero as $$m\to\infty$$ for any $$f\in L_{\mu}[0,\pi]$$ in the norm of the space $$L_{\nu}[0,\pi]$$ if the indices satisfy the inequality $$1/\varkappa+1/\mu-1/\nu\leq 1$$ (except for the case $$\varkappa=\nu=\infty$$ , $$\mu=1$$ ). In particular, in the case of a square summable function $$u$$ the uniform equiconvergence on the whole interval $$[0,\pi]$$ is proved for an arbitrary function $$f\in L_{2}[0,\pi]$$ |
Databáze: | OpenAIRE |
Externí odkaz: |