Algebraic geometry over algebraic structures X: Ordinal dimension
Autor: | Vladimir N. Remeslennikov, Alexei Myasnikov, Evelina Daniyarova |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Mathematics::Commutative Algebra Algebraic structure General Mathematics 010102 general mathematics Dimension of an algebraic variety Field (mathematics) Algebraic geometry 01 natural sciences 0103 physical sciences Universal algebraic geometry 010307 mathematical physics Krull dimension 0101 mathematics Algebraic number Affine variety Mathematics |
Zdroj: | International Journal of Algebra and Computation. 28:1425-1448 |
ISSN: | 1793-6500 0218-1967 |
DOI: | 10.1142/s0218196718400039 |
Popis: | This work is devoted to interpretation of concepts of Zariski dimension of an algebraic variety over a field and of Krull dimension of a coordinate ring in algebraic geometry over algebraic structures of an arbitrary signature. Proposed dimensions are ordinal numbers (ordinals). |
Databáze: | OpenAIRE |
Externí odkaz: |