Locally trivial 𝔾a−actions on ℂ5 with singular algebraic quotients
Autor: | Imad Jaradat, David R. Finston |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Pure mathematics Algebra and Number Theory Function field of an algebraic variety Geometric quotient 010102 general mathematics Quotient algebra 01 natural sciences Algebraic cycle 0103 physical sciences 010307 mathematical physics Geometric invariant theory 0101 mathematics Algebraic number Quotient Singular point of an algebraic variety Mathematics |
Zdroj: | Communications in Algebra. 45:4992-5001 |
ISSN: | 1532-4125 0092-7872 |
DOI: | 10.1080/00927872.2017.1290100 |
Popis: | Simple examples are given of proper algebraic actions of the additive group of complex numbers on ℂ5 whose geometric quotients are, respectively, affine, strictly quasiaffine, and algebraic spaces which are not schemes. Moreover, a Zariski locally trivial action is given whose ring of invariant regular functions defines a singular factorial affine fourfold embedded in ℂ12. The geometric quotient for the action embeds as a strictly quasiaffine variety in the smooth locus of the algebraic quotient with complement isomorphic to the normal affine surface with the A2−singularity at the origin. |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...