Arctic Tropospheric Ozone Trends

Autor: Kathy S Law, Jens Liengaard Hjorth, Jakob Boyd Pernov, Cynthia Whaley, Henrik Skov, Martine Collaud Coen, Joakim Langner, Steve Robert Arnold, David W Tarasick, Jesper Christensen, Makoto Deushi, Peter Effertz, Greg Faluvegi, Michael Gauss, Ulas Im, Naga Oshima, Irina Petropavlovskikh, David Plummer, Kostas Tsigaridis, Svetlana Tsyro, Sverre Solberg, Steven T Turnock
Rok vydání: 2023
DOI: 10.22541/essoar.167690073.34678721/v1
Popis: Trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), are estimated using available surface and ozonesonde profile data for 1993-2019. Using a coherent methodology, observed trends are compared to modeled trends (1995-2015) from the Arctic Monitoring Assessment Programme SLCF 2021 assessment. Statistically significant increases in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent decreasing trends in surface carbon monoxide, are generally captured by multi-model median (MMM) trends. Wintertime increases are also estimated in the free troposphere at most Arctic sites, but tend to be overestimated by the MMMs. Springtime surface ozone increases in northern coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are not always reproduced. Possible reasons for observed changes and model behavior are discussed, including decreasing precursor emissions, changing ozone sinks, and variability in large-scale meteorology.
Databáze: OpenAIRE