The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells

Autor: F J Dumont, M R Melino, M J Staruch, S L Koprak, P A Fischer, N H Sigal
Rok vydání: 1990
Předmět:
Zdroj: The Journal of Immunology. 144:1418-1424
ISSN: 1550-6606
0022-1767
DOI: 10.4049/jimmunol.144.4.1418
Popis: The structurally related immunosuppressive macrolides FK-506 and rapamycin (RAP) were previously shown to inhibit T cell stimulation through different mechanisms. FK-506 acts similarly to cyclosporin A (CsA) and prevents IL-2 production and IL-2R expression. RAP has little or no effect on these events but markedly impedes the response to IL-2. The present study was initiated to examine the possibility of a complementation between the immunosuppressive actions of RAP and FK-506 or CsA on various murine T cell responses. RAP potentiated the effect of CsA on proliferation and IL-2R expression in T cells stimulated with ionomycin + PMA. However, in the same system, RAP acted as a potent antagonist of FK-506 suppression. RAP also blocked FK-506- but not CsA-mediated inhibition of IL-2 mRNA induction. By using model systems sensitive to inhibition by RAP but not FK-506 we further demonstrated that FK-506 reciprocally behaves as an antagonist of RAP. In one such model, the stimulation of splenic T cells with IL-2 + PMA, FK-506, but not CsA, reversed the suppressive effect of RAP on proliferation. FK-506 also antagonized RAP-mediated inhibition with respect to the induction of Ly-6E Ag expression by IFN in YAC cells. To explore further the competition between the two macrolides at the cellular level, we performed binding experiments with a radiolabeled derivative of FK-506. Both FK-506 and RAP, but not CsA, inhibited the binding of this probe in YAC cells. Taken together, these data demonstrate that FK-506 and RAP antagonize each other's biologic activity and physically interact with a common receptor site(s) in T cells. Moreover, CsA acts at a site distinct from the cellular target(s) of FK-506 or RAP.
Databáze: OpenAIRE