Hydroelastic interaction of nonlinear waves with floating sheets
Autor: | Masoud Hayatdavoodi, Vasily Kostikov, R. Cengiz Ertekin |
---|---|
Rok vydání: | 2021 |
Předmět: |
Fluid Flow and Transfer Processes
Timoshenko beam theory Surface (mathematics) Hydroelasticity Materials science Field (physics) General Engineering Computational Mechanics Rigidity (psychology) Mechanics Condensed Matter Physics 01 natural sciences 010305 fluids & plasmas Nonlinear system 0103 physical sciences Reflection (physics) Deformation (engineering) 010306 general physics |
Zdroj: | Theoretical and Computational Fluid Dynamics. 35:515-537 |
ISSN: | 1432-2250 0935-4964 |
Popis: | Hydroelastic responses of floating elastic surfaces to incident nonlinear waves of solitary and cnoidal type are studied. There are N number of the deformable surfaces, and these are represented by thin elastic plates of variable properties and different sizes and rigidity. The coupled motion of the elastic surfaces and the fluid are solved simultaneously within the framework of linear beam theory for the structures and the nonlinear Level I Green–Naghdi theory for the fluid. The water surface elevation, deformations of the elastic surfaces, velocity and pressure fields, wave reflection and transmission coefficients are calculated and presented. Results of the model are compared with existing laboratory measurements and other numerical solutions. In the absence of any restriction on the nonlinearity of the wave field, number of surfaces, their sizes and rigidities, a wide range of wave–structure conditions are considered. It is found that wave reflection from an elastic surface changes significantly with the rigidity, and the highest reflection is observed when the plate is rigid (not elastic). It is also found that due to the wave–structure interaction, local wave fields with different length and celerity are formed under the plates. In the case of multiple floating surfaces, it is observed that the spacing between plates has more significant effect on the wave field than their lengths. Also, the presence of relatively smaller floating plates upwave modifies remarkably the deformation and response of the downwave floating surface. |
Databáze: | OpenAIRE |
Externí odkaz: |