ERCEIVING SOLUTIONS FOR AN EXPONENTIAL DIOPHANTINE EQUATION LINKING SAFE AND SOPHIE GERMAIN PRIMES qx + py= z2
Autor: | null V. Pandichelvi, null B. Umamaheswari |
---|---|
Rok vydání: | 2022 |
Zdroj: | jnanabha. 52:165-167 |
ISSN: | 2455-7463 0304-9892 |
DOI: | 10.58250/jnanabha.2022.52219 |
Popis: | In this article, an exponential Diophantine equation qx + py= z2 where p , q are Safe primes and q Sophie Germain primes respectively and x, y, z are positive integers is measured for all the opportunities of x+y = 0, 1, 2, 3 and showed that all conceivable integer solutions are (p, q, x, y, z) = (7, 3, 1, 0, 2), (11, 5, 1, 1, 4), (5, 2, 3, 0, 3), (2q + 1, q, 2, 1, q + 1) by retaining basic rules of Mathematics. |
Databáze: | OpenAIRE |
Externí odkaz: |