ERCEIVING SOLUTIONS FOR AN EXPONENTIAL DIOPHANTINE EQUATION LINKING SAFE AND SOPHIE GERMAIN PRIMES qx + py= z2

Autor: null V. Pandichelvi, null B. Umamaheswari
Rok vydání: 2022
Zdroj: jnanabha. 52:165-167
ISSN: 2455-7463
0304-9892
DOI: 10.58250/jnanabha.2022.52219
Popis: In this article, an exponential Diophantine equation qx + py= z2 where p , q are Safe primes and q Sophie Germain primes respectively and x, y, z are positive integers is measured for all the opportunities of x+y = 0, 1, 2, 3 and showed that all conceivable integer solutions are (p, q, x, y, z) = (7, 3, 1, 0, 2), (11, 5, 1, 1, 4), (5, 2, 3, 0, 3), (2q + 1, q, 2, 1, q + 1) by retaining basic rules of Mathematics.
Databáze: OpenAIRE