On the density of semisimple matrices in indefinite scalar product spaces
Autor: | Ralph John de la Cruz, Philip Saltenberger |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | The Electronic Journal of Linear Algebra. 37:387-401 |
ISSN: | 1081-3810 |
DOI: | 10.13001/ela.2021.5509 |
Popis: | For an indefinite scalar product $[x,y]_B = x^HBy$ for $B= \pm B^H \in \mathbf{Gl}_n(\mathbb{C})$ on $\mathbb{C}^n \times \mathbb{C}^n$, it is shown that the set of diagonalizable matrices is dense in the set of all $B$-normal matrices. The analogous statement is also proven for the sets of $B$-selfadjoint, $B$-skewadjoint and $B$-unitary matrices. |
Databáze: | OpenAIRE |
Externí odkaz: |