Mercapturate pathway metabolites of sotorasib, a covalent inhibitor of KRASG12C, are associated with renal toxicity in the Sprague Dawley rat
Autor: | Jonathan Werner, Benjamin David, Rhian Davies, W. Griffith Humphreys, Thomas M. Monticello, Upendra P. Dahal, Barbara Thomas, Katsu Ishida, William Siska, Min Jiang, Jonathan Stauber, J. Russell Lipford, Jan Wahlstrom |
---|---|
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
Pharmacology Kidney Necrosis Chemistry Metabolite Regeneration (biology) Toxicology medicine.disease_cause Nephrotoxicity 03 medical and health sciences chemistry.chemical_compound 030104 developmental biology 0302 clinical medicine medicine.anatomical_structure In vivo 030220 oncology & carcinogenesis Toxicity medicine KRAS medicine.symptom |
Zdroj: | Toxicology and Applied Pharmacology. 423:115578 |
ISSN: | 0041-008X |
Popis: | Sotorasib is a first-in class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. In the nonclinical toxicology studies of sotorasib, the kidney was identified as a target organ of toxicity in the rat but not the dog. Renal toxicity was characterized by degeneration and necrosis of the proximal tubular epithelium localized to the outer stripe of the outer medulla (OSOM), which suggested that renal metabolism was involved. Here, we describe an in vivo mechanistic rat study designed to investigate the time course of the renal toxicity and sotorasib metabolites. Renal toxicity was dose- and time-dependent, restricted to the OSOM, and the morphologic features progressed from vacuolation and necrosis to regeneration of tubular epithelium. The renal toxicity correlated with increases in renal biomarkers of tubular injury. Using mass spectrometry and matrix-assisted laser desorption/ionization, a strong temporal and spatial association between renal toxicity and mercapturate pathway metabolites was observed. The rat is reported to be particularly susceptible to the formation of nephrotoxic metabolites via this pathway. Taken together, the data presented here and the literature support the hypothesis that sotorasib-related renal toxicity is mediated by a toxic metabolite derived from the mercapturate and β-lyase pathway. Our understanding of the etiology of the rat specific renal toxicity informs the translational risk assessment for patients. |
Databáze: | OpenAIRE |
Externí odkaz: |