Analysis and numerical solution of the generalized proportional fractional Cauchy problem
Autor: | Abdellatif Ben Makhlouf, A. M. Nagy, Dumitru Baleanu, Djalal Boucenna |
---|---|
Rok vydání: | 2021 |
Předmět: |
Cauchy problem
Numerical Analysis Picard–Lindelöf theorem Applied Mathematics Numerical technique Cauchy distribution 010103 numerical & computational mathematics Derivative 01 natural sciences 010101 applied mathematics Computational Mathematics Convergence (routing) Applied mathematics 0101 mathematics Mathematics |
Zdroj: | Applied Numerical Mathematics. 167:173-186 |
ISSN: | 0168-9274 |
Popis: | In this paper, we explore the existence and uniqueness theorem for a problem of the fractional Cauchy form, with dependence on the generalized proportional Caputo derivative. Furthermore, a new numerical technique is presented based on a decomposition formula for the generalized proportional Caputo derivative. Convergence analysis of the proposed technique is proved. Finally, numerical results are obtained to confirm the validity of the proposed method. |
Databáze: | OpenAIRE |
Externí odkaz: |