Popis: |
The focus of research effort described here is to develop novel simulation tools to address design and optimization needs in the general class of problems that involve species and fluid (liquid and gas phases) transport through sieving media. This was primarily motivated by the heightened attention on Chem/Bio early detection systems, which among other needs, have a need for high efficiency filtration, collection and sample preparation systems. Hence, the said goal was to develop the computational analysis tools necessary to optimize these critical operations. This new capability is designed to characterize system efficiencies based on the details of the microstructure and environmental effects. To accomplish this, new lattice Boltzmann simulation capabilities where developed to include detailed microstructure descriptions, the relevant surface forces that mediate species capture and release, and temperature effects for both liquid and gas phase systems. While developing the capability, actual demonstration and model systems (and subsystems) of national and programmatic interest were targeted to demonstrate the capability. As a result, where possible, experimental verification of the computational capability was performed either directly using Digital Particle Image Velocimetry or published results. |