When is Every Kernel Functor Idempotent?
Autor: | Jorge E. Viola-Prioli |
---|---|
Rok vydání: | 1975 |
Předmět: |
Discrete mathematics
Fiber functor Pure mathematics Functor Direct image functor General Mathematics 010102 general mathematics Cone (category theory) 01 natural sciences 0103 physical sciences Idempotence ComputingMethodologies_DOCUMENTANDTEXTPROCESSING 010307 mathematical physics 0101 mathematics Exact functor Kernel (category theory) Inverse image functor Mathematics |
Zdroj: | Canadian Journal of Mathematics. 27:545-554 |
ISSN: | 1496-4279 0008-414X |
DOI: | 10.4153/cjm-1975-065-1 |
Popis: | Introduction. All rings occurring are associative and possess a unity, which is preserved under subrings and ring homomorphisms. All modules are unitary right modules. We denote the category of rights-modules.In recent years several authors have studied rings R by imposing restrictions on the torsion theories [4] of . (See for instance [2; 23; 24].) This paper offers another alternative to that trend, namely the study of rings R via their set of kernel functors K﹛R). |
Databáze: | OpenAIRE |
Externí odkaz: |