A weighted Shifted Boundary Method for free surface flow problems
Autor: | Alex Main, Léo Nouveau, Guglielmo Scovazzi, Oriol Colomés |
---|---|
Rok vydání: | 2021 |
Předmět: |
Quadratic growth
Numerical Analysis Physics and Astronomy (miscellaneous) business.industry Applied Mathematics Mathematical analysis Computational fluid dynamics Finite element method Computer Science Applications Physics::Fluid Dynamics Computational Mathematics symbols.namesake Modeling and Simulation Free surface Compressibility Taylor series symbols Boundary value problem business Numerical stability Mathematics |
Zdroj: | Journal of Computational Physics. 424:109837 |
ISSN: | 0021-9991 |
DOI: | 10.1016/j.jcp.2020.109837 |
Popis: | The Shifted Boundary Method (SBM) belongs to the class of unfitted (or immersed, or embedded) finite element methods and was recently introduced for the Poisson, linear advection/diffusion, Stokes, Navier-Stokes, acoustics, and shallow-water equations. By reformulating the original boundary value problem over a surrogate (approximate) computational domain, the SBM avoids integration over cut cells and the associated problematic issues regarding numerical stability and matrix conditioning. Accuracy is maintained by modifying the original boundary conditions using Taylor expansions. Hence the name of the method, that shifts the location and values of the boundary conditions. In this article, we extend the SBM to the simulation of incompressible Navier-Stokes flows with moving free-surfaces, by appropriately weighting its variational form with the elemental volume fraction of active fluid. This approach prevents spurious pressure oscillations in time, which would otherwise be produced if the total active fluid volume were to change abruptly over a time step. In fact, the proposed weighted SBM method induces small mass (i.e., volume) conservation errors, which converge quadratically in the case of piecewise-linear finite element interpolations, as the grid is refined. We present an extensive set of two- and three-dimensional tests to demonstrate the robustness and accuracy of the method. |
Databáze: | OpenAIRE |
Externí odkaz: |