A row of counter‐rotating vortices

Autor: S. A. Maslowe, R. Mallier
Rok vydání: 1993
Předmět:
Zdroj: Physics of Fluids A: Fluid Dynamics. 5:1074-1075
ISSN: 0899-8213
Popis: In 1967, Stuart [J. Fluid Mech. 29, 417 (1967)] found an exact nonlinear solution of the inviscid, incompressible two‐dimensional Navier–Stokes equations, representing an infinite row of identical vortices which are now known as Stuart vortices. In this Brief Communication, the corresponding result for an infinite row of counter‐rotating vortices, i.e., a row of vortices of alternating sign, is presented. While for Stuart’s solution, the streamfunction satisfied Liouville’s equation, the streamfunction presented here satisfies the sinh–Gordon equation [Solitons: An Introduction (Cambridge U.P., London, 1989)]. The connection with Stuart’s solution is discussed.
Databáze: OpenAIRE