A row of counter‐rotating vortices
Autor: | S. A. Maslowe, R. Mallier |
---|---|
Rok vydání: | 1993 |
Předmět: |
Physics
General Engineering Vortex Physics::Fluid Dynamics Nonlinear system Nonlinear Sciences::Adaptation and Self-Organizing Systems Incompressible flow Inviscid flow Stream function Two-dimensional flow Navier–Stokes equations Jacobi integral Nonlinear Sciences::Pattern Formation and Solitons Mathematical physics |
Zdroj: | Physics of Fluids A: Fluid Dynamics. 5:1074-1075 |
ISSN: | 0899-8213 |
Popis: | In 1967, Stuart [J. Fluid Mech. 29, 417 (1967)] found an exact nonlinear solution of the inviscid, incompressible two‐dimensional Navier–Stokes equations, representing an infinite row of identical vortices which are now known as Stuart vortices. In this Brief Communication, the corresponding result for an infinite row of counter‐rotating vortices, i.e., a row of vortices of alternating sign, is presented. While for Stuart’s solution, the streamfunction satisfied Liouville’s equation, the streamfunction presented here satisfies the sinh–Gordon equation [Solitons: An Introduction (Cambridge U.P., London, 1989)]. The connection with Stuart’s solution is discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |