On the minimum vertex cover of generalized Petersen graphs
Autor: | David G. L. Wang, Dannielle D.D. Jin |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Discrete Applied Mathematics. 266:309-318 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2018.12.011 |
Popis: | It is known that any vertex cover of the generalized Petersen graph P ( n , k ) has size at least n . Behsaz, Hatami and Mahmoodian characterized such graphs with minimum vertex cover numbers n and n + 1 , and those with k ≤ 3 . For k ≥ 4 and n ≥ 2 k + 2 , we prove that if the 2-adic valuation of n is less than or equal to that of k , then the minimum vertex cover number of P ( n , k ) equals n + 2 if and only if n ∈ { 2 k + 2 , 3 k − 1 , 3 k + 1 } . |
Databáze: | OpenAIRE |
Externí odkaz: |