The tensile strength of volcanic rocks

Autor: Michael Heap, Andrea Aguilar Velasco, Patrick Baud, Lucille Carbillet, Frances Deegan, H. Albert Gilg, Luke Griffiths, Claire Harnett, Zhen Heng, Eoghan Holohan, Jean-Christophe Komorowski, Roberto Moretti, Thierry Reuschlé, Marina Rosas-Carbajal, Chun’an Tang, Valentin Troll, Emma Vairé, Marie Vistour, Fabian Wadsworth, Tao Xu
Rok vydání: 2022
Popis: The tensile strength of volcanic rock exerts control over several key volcanic processes, including fragmentation, magma chamber rupture, and dyke propagation. However, and despite this importance, values of tensile strength for volcanic rocks are relatively rare. It is also unclear how their tensile strength is modified by rock physical properties such as porosity, pore size, and pore shape and ongoing processes such as hydrothermal alteration. We present here the results of systematic laboratory and numerical experiments designed to better understand the influence of porosity, microstructural parameters (pore size, shape, and orientation), and hydrothermal alteration on the tensile strength of volcanic rocks. Our data show that tensile strength is reduced by up to an order of magnitude as porosity is increased from 0.01 to above 0.3, highlighting that porosity exerts a first-order control on the tensile strength of volcanic rocks. Our data also show that pore diameter, pore aspect ratio, and pore orientation can also influence tensile strength. Finally, our data show that hydrothermal alteration can decrease tensile strength if associated with mineral dissolution and weak secondary minerals, or increase tensile strength if associated with pore- and crack-filling mineral precipitation. We present a series of theoretical and semi-empirical constitutive models that can be used to estimate the tensile strength of volcanic rocks as a function of porosity or alteration intensity. To outline the implications of our data, we show how tensile strength estimations can influence predictions of magma overpressures and assessments of the volume and radius of a magma chamber, and we explore the influence of alteration using discrete element method modelling in which we model the amount and distribution of damage within variably-altered host-rock surrounding a pressurised dyke. It is our hope that the experiments, models, and understanding provided by our study prove useful for modellers that require the tensile strength of volcanic rocks for their models.
Databáze: OpenAIRE