Visualizing Interactions Between Solar Photovoltaic Farms and the Atmospheric Boundary Layer
Autor: | Brooke J. Stanislawski, Sudhanshu Sane, Tushar M. Athawale, Chris R. Johnson |
---|---|
Rok vydání: | 2021 |
Předmět: |
010504 meteorology & atmospheric sciences
Planetary boundary layer business.industry Photovoltaic system 020207 software engineering 02 engineering and technology Wind direction Solar energy 01 natural sciences Wind speed law.invention Operating temperature law Physics::Space Physics Thermal Solar cell 0202 electrical engineering electronic engineering information engineering Astrophysics::Solar and Stellar Astrophysics Environmental science Aerospace engineering business 0105 earth and related environmental sciences |
Zdroj: | e-Energy |
Popis: | The efficiency of solar panels depends on the operating temperature. As the panel temperature rises, efficiency drops. Thus, the solar energy community aims to understand the factors that influence the operating temperature, which include wind speed, wind direction, turbulence, ambient temperature, mounting configuration, and solar cell material. We use high-resolution numerical simulations to model the flow and thermal behavior of idealized solar farms. Because these simulations model such complex behavior, advanced visualization techniques are needed to investigate and understand the results. Here, we present advanced 3D visualizations of numerical simulation results to illustrate the flow and heat transport in an idealized solar farm. The findings can be used to understand how flow behavior influences module temperatures, and vice versa. |
Databáze: | OpenAIRE |
Externí odkaz: |