Global dynamics for a charged and colliding plasma in presence of a massive scalar field on the Robertson–Walker spacetime
Autor: | Marcelin Kenmogne Noumo, Norbert Noutchegueme, Roger Tagne Wafo |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Spacetime 010505 oceanography General Mathematics Space time 010102 general mathematics Cosmological constant Lambda Space (mathematics) 01 natural sciences General Relativity and Quantum Cosmology Metric (mathematics) 0101 mathematics Scalar field Energy (signal processing) 0105 earth and related environmental sciences Mathematical physics |
Zdroj: | Monatshefte für Mathematik. 193:383-439 |
ISSN: | 1436-5081 0026-9255 |
DOI: | 10.1007/s00605-020-01450-3 |
Popis: | We consider the coupled Einstein–Maxwell–Boltzmann system with cosmological constant in presence of a massive scalar field. The background metric is that of Friedman–Lemaitre–Robertson–Walker space time in the spatially homogeneous case where the unknown functions only depend on time and not on the space variables $$(x^i)$$ , $$i=1,2,3$$ . By combining the energy estimates method with that of characteristics we derive under suitable conditions on the collision kernel [see (2.20)], a local (in time) solution of the coupled system. Further, under the hypotheses that the data are small in some appropriate norms and that the cosmological constant satisfies $$\Lambda > -4\pi m^2\Phi _0^2$$ , we derive a unique global (in time) solution (Theorem 6.1). |
Databáze: | OpenAIRE |
Externí odkaz: |