Assessment of regional downscaling simulations for long term mean, excess and deficit Indian Summer Monsoons
Autor: | J. V. Revadekar, M. V. S. Ramarao, Raghavan Krishnan, Milind Mujumdar, J. Sanjay, K. P. Sooraj, Hamza Varikoden |
---|---|
Rok vydání: | 2018 |
Předmět: |
Global and Planetary Change
010504 meteorology & atmospheric sciences 0208 environmental biotechnology 02 engineering and technology Forcing (mathematics) Oceanography Monsoon 01 natural sciences 020801 environmental engineering Indian summer Climatology Synoptic scale meteorology Environmental science Climate model Precipitation 0105 earth and related environmental sciences Orographic lift Downscaling |
Zdroj: | Global and Planetary Change. 162:28-38 |
ISSN: | 0921-8181 |
Popis: | This study undertakes a comprehensive assessment of dynamical downscaling of summer monsoon (June–September; JJAS) rainfall over heterogeneous regions namely the Western Ghats (WG), Central India (CI) and North-Eastern Region (NER) for long term mean, excess and deficit episodes for the historical period from 1951 to 2005. This downscaling assessment is based on six Coordinated Regional Climate Downscaling Experiments (CORDEX) for South Asia (SAS) region, their five driving Global Climate Models (GCM) simulations along with observations from India Meteorological Department (IMD) and Asian Precipitation Highly Resolved Observational Integrated Towards Evaluation for Water Resources (APHRODITE). The analysis reveals an overall reduction of dry bias in rainfall across the regions of Indian sub-continent in most of the downscaled CORDEX-SAS models and in their ensemble mean as compared to that of driving GCMs. The interannual variabilities during historical period are reasonably captured by the ensemble means of CORDEX-SAS simulations with an underestimation of 0.43%, 38% and 52% for the WG, CI and NER, respectively. Upon careful examination of the CORDEX-SAS models and their driving GCMs revealed considerable improvement in the regionally downscaled rainfall. The value addition of dynamical downscaling is apparent over the WG in Regional Climate Model (RCM) simulations with an improvement of more than 30% for the long term mean, excess and deficit episodes from their driving GCMs. In the case of NER, the improvement in the downscaled rainfall product is more than 10% for all the episodes. However, the value addition in the CORDEX-SAS simulations for CI region, dominantly influenced by synoptic scale processes, is not clear. Nevertheless, the reduction of dry bias in the complex topographical regions is remarkable. The relative performance of dynamical downscaling of rainfall over complex topography in response to local forcing and orographic lifting depict the value addition (30% over WG and 10% over NER, with a statistical significance of more than 5% level), when compared with the synoptic scale system induced rainfall over the plains of central-India. |
Databáze: | OpenAIRE |
Externí odkaz: |