Mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3'-C--H bond cleavage

Autor: T Krenitsky, JoAnne Stubbe, Mark A. Ator
Rok vydání: 1983
Předmět:
Zdroj: Journal of Biological Chemistry. 258:1625-1631
ISSN: 0021-9258
DOI: 10.1016/s0021-9258(18)33031-x
Popis: Incubation of the pyrimidine [3'-3H]UDP with ribonucleotide reductase resulted in an isotope effect on the conversion to dUDP which varied as a function of pH and allosteric effectors (pH, kH/kT, effector): 6.6, 4.7, ATP; 7.6, 3.3, ATP; 7.6, 2.6, dATP; 7.6, 2.0, TTP; 8.4, 2.8, ATP. During this reaction 3H2O was also released. The lower the pH of the reaction, the larger the isotope effect, and the smaller the amount of 3H2O produced. At 50% conversion of UDP to dUDP and at pH 7.6, approximately 0.5% of total 3H present in solution was volatilized, while at pH 8.4, approximately 0.9% was volatilized. Similar experiments in which the purine [3'-3H]ADP was incubated with ribonucleotide reductase also resulted in an isotope effect on its conversion to dATP which varied as a function of pH (pH, kH/kT with dGTP as an effector); 6.6, 1.9; 7.6, 1.7; 8.6, 1.4. Furthermore, 3H2O was also released as a function of the extent of the reaction. At 50% turnover and pH 7.6, approximately 0.6% of 3H2O was volatilized, while at pH 8.6 approximately 1.25% was released. Two control experiments in which either the B1 subunit of ribonucleotide reductase was inactivated with 2'-chloro-2'-deoxyuridine 5'-diphosphate or the B2 subunit of ribonucleotide reductase was inactivated with 2'-azido-2'-deoxyuridine 5'-diphosphate and then the enzyme incubated with [3'-3H]ADP or [3'-3H]UDP indicated that in neither case was 3H released. Both B1 and B2 subunits are required for cleavage of the 3'-C--H bond. Incubation of [3'-3H]dADP or [3'-3H]dUDP with ribonucleotide reductase produced no measurable release of 3H. These data clearly indicate that conversion of a purine or pyrimidine diphosphate to a deoxynucleotide diphosphate by Escherichia coli ribonucleotide reductase requires cleavage of the 3'-C--H bond of the substrate. The fate of the 3'-H of the substrate was also determined. Incubation of [3'-2H]UDP with ribonucleotide reductase resulted in the production of [3'-2H]dUDP.
Databáze: OpenAIRE