Accelerating Image-Sensor-Based Deep Learning Applications

Autor: Kevin Siu, Sayeh Sharify, Mostafa Mahmoud, Dylan Malone Stuart, Alberto Delmas Lascorz, Andreas Moshovos, Jorge Albericio, Isak Edo Vivancos, Patrick Judd, Zissis Poulos, Milos Nikolic
Rok vydání: 2019
Předmět:
Zdroj: IEEE Micro. 39:26-35
ISSN: 1937-4143
0272-1732
DOI: 10.1109/mm.2019.2930596
Popis: We review two inference accelerators that exploit value properties in deep neural networks: 1) Diffy that targets spatially correlated activations in computational imaging DNNs, and 2) Tactical that targets sparse neural networks using a low-overhead hardware/software weight-skipping front-end. Then we combine both into Di-Tactical to boost benefits for both scene understanding workloads and computational imaging tasks.
Databáze: OpenAIRE