On the stability of rational approximations to the cosine with only imaginary poles

Autor: Steven M. Serbin, O. A. Karakashian, Laurence A. Bales
Rok vydání: 1988
Předmět:
Zdroj: BIT. 28:651-658
ISSN: 1572-9125
0006-3835
DOI: 10.1007/bf01941140
Popis: Letr(z) be a rational approximation to cosz with only imaginary poles ±iγ1−1/2, ±iγ2−1/2, ..., ±iγm−1/2 such that |cozz −r(z)| ≤C|z|2m+2 as |z| → 0. If the degree of the numerator ofr(z) is less than or equal to 2m andγi ≥m/4,i=1, ...,m, then we show that |r(z)|≦1 for all realz.
Databáze: OpenAIRE