The Relativistic Boltzmann Equation on Bianchi Type I Space Time for Hard Potentials
Autor: | Norbert Noutchegueme, Etienne Takou, E. Kamdem Tchuengue |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Space time 010102 general mathematics Mathematical analysis Collision kernel Statistical and Nonlinear Physics Type (model theory) 01 natural sciences Boltzmann equation 010101 applied mathematics Metric (mathematics) Functional space Initial value problem Uniqueness 0101 mathematics Mathematical Physics |
Zdroj: | Reports on Mathematical Physics. 80:87-114 |
ISSN: | 0034-4877 |
DOI: | 10.1016/s0034-4877(17)30063-0 |
Popis: | In this paper, we consider the Cauchy problem for the spatially homogeneous relativistic Boltzmann equation with small initial data. The collision kernel considered here is for a hard potentials case. The background space-time in which the study is done is the Bianchi type I space-time. Under certain conditions made on the scattering kernel and on the metric, a uniqueness global (in time) solution is obtained in a suitable weighted functional space. |
Databáze: | OpenAIRE |
Externí odkaz: |