Asymptotic Behavior for a Viscoelastic Kirchhoff-Type Equation with Delay and Source Terms
Autor: | Meriem Saker, Nouri Boumaza, Billel Gheraibia |
---|---|
Rok vydání: | 2021 |
Předmět: |
Work (thermodynamics)
Partial differential equation Applied Mathematics 010102 general mathematics Mathematical analysis 01 natural sciences Domain (mathematical analysis) Viscoelasticity Term (time) 010101 applied mathematics Nonlinear system Bounded function 0101 mathematics Energy (signal processing) Mathematics |
Zdroj: | Acta Applicandae Mathematicae. 171 |
ISSN: | 1572-9036 0167-8019 |
DOI: | 10.1007/s10440-021-00387-5 |
Popis: | In this work, we consider a nonlinear viscoelastic Kirchhoff-type equation with delay and source terms in a bounded domain. Under an hypothesis between the weight of the delay term in the feedback and the weight of the weak damping term, we obtain a global existence of solutions and established the general decay rate, also we prove the finite time blow-up result of solutions with negative initial energy. |
Databáze: | OpenAIRE |
Externí odkaz: |