Consistent boundary conditions for PDE filter regularization in topology optimization
Autor: | Mathias Wallin, Oded Amir, Niklas Ivarsson, Daniel A. Tortorelli |
---|---|
Rok vydání: | 2020 |
Předmět: |
Control and Optimization
Computer science Topology optimization Scalar (mathematics) Computational mathematics 02 engineering and technology Filter (signal processing) 01 natural sciences Computer Graphics and Computer-Aided Design Padding Regularization (mathematics) Computer Science Applications 010101 applied mathematics 020303 mechanical engineering & transports 0203 mechanical engineering Control and Systems Engineering Boundary value problem 0101 mathematics Engineering design process Algorithm Software |
Zdroj: | Structural and Multidisciplinary Optimization. 62:1299-1311 |
ISSN: | 1615-1488 1615-147X |
Popis: | Design variables in density-based topology optimization are typically regularized using filtering techniques. In many cases, such as stress optimization, where details at the boundaries are crucially important, the filtering in the vicinity of the design domain boundary needs special attention. One well-known technique, often referred to as “padding,” is to extend the design domain with extra layers of elements to mitigate artificial boundary effects. We discuss an alternative to the padding procedure in the context of PDE filtering. To motivate this augmented PDE filter, we make use of the potential form of the PDE filter which allows us to add penalty terms with a clear physical interpretation. The major advantages of the proposed augmentation compared with the conventional padding is the simplicity of the implementation and the possibility to tune the boundary properties using a scalar parameter. Analytical results in 1D and numerical results in 2D and 3D confirm the suitability of this approach for large-scale topology optimization. |
Databáze: | OpenAIRE |
Externí odkaz: |