Generating function of multiple polylog of Hurwitz type
Autor: | Kentaro Ihara, Yusuke Kusunoki, Yayoi Nakamura, Hitomi Saeki |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Canadian Journal of Mathematics. :1-17 |
ISSN: | 1496-4279 0008-414X |
Popis: | We introduce interpolated multiple Hurwitz polylogs and interpolated multiple Hurwitz zeta values. In addition, we discuss the generating functions for the sum of the polylogs/zeta values of fixed weight, depth, and all heights. The functions are expressed in terms of generalized hypergeometric functions. Compared with the pioneering results of Ohno and Zagier on the generating function, our setup generalizes the results in three directions, namely, at general heights, with a t-interpolation, and as a Hurwitz type. As an application, by fixing the Hurwitz parameter to rational numbers, the generating functions for multiple zeta values with level are given. |
Databáze: | OpenAIRE |
Externí odkaz: |