On the limit shape of elements of an arithmetic semigroup with an exponentially growing counting function of basis elements
Autor: | V. L. Chernyshev, D. S. Minenkov, Vladimir E. Nazaikinskii |
---|---|
Rok vydání: | 2017 |
Předmět: |
Condensed Matter::Quantum Gases
Discrete mathematics Basis (linear algebra) Semigroup General Mathematics 010102 general mathematics 02 engineering and technology Function (mathematics) 01 natural sciences 020303 mechanical engineering & transports 0203 mechanical engineering Exponential growth Large deviations theory Limit (mathematics) 0101 mathematics Arithmetic Mathematics |
Zdroj: | Doklady Mathematics. 95:226-229 |
ISSN: | 1531-8362 1064-5624 |
DOI: | 10.1134/s1064562417030115 |
Popis: | We consider an arithmetic semigroup with exponential growth of the counting function of abstract primes. The Bose–Einstein statistics provides the most probable mean occupation numbers in the sense that large deviations of a sum of occupation numbers from the corresponding sum for the Bose–Einstein statistics have small probabilities. The probabilities of large deviations are estimated. |
Databáze: | OpenAIRE |
Externí odkaz: |