Structural, magnetic and hyperfine characterization of Zn x Fe 3–x O 4 nanoparticles prepared by sol-gel approach via inorganic precursors

Autor: Vladimir Pankov, Konstantin V. Pokholok, Dmitry Filimonov, Elena Petrova, V.O. Natarov, D. Kotsikau
Rok vydání: 2018
Předmět:
Zdroj: Journal of Physics and Chemistry of Solids. 114:64-70
ISSN: 0022-3697
DOI: 10.1016/j.jpcs.2017.11.004
Popis: Structural characteristics and magnetic properties of ZnxFe3–xO4 (where х = 0; 0.09; 0.18; 0.45; 1) nanoparticles were studied with X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR) and vibrating sample magnetometry (VSM). Oxidation of Fe2+ ions, redistribution of Zn2+ and Fe3+ ions between octahedral and tetrahedral sites, and the formation of cation vacancies in spinel-type cubic structure of the obtained ZnxFe3–x–y□yO4 substitutional solid solutions were revealed by 57Fe Mossbauer spectroscopy. The nanoparticles synthesized via a modified sol-gel method using inorganic precursors have a size of 4–10 nm, single-phase composition, superparamagnetic behavior at room temperature (300 K) and a relatively hydrophilic surface to form stable aqueous suspensions. The maximum magnetization of 59 emu/g at 300 K corresponds to Zn0.18Fe2.82O4 composition. The listed features make the materials promising candidates for various biological and medical applications such as contrast-enhanced magnetic resonance imaging, hyperthermia of pathological tissues, controlled drug release, and separation of nucleic acids.
Databáze: OpenAIRE