Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacteriumSynechocystissp. PCC 6803

Autor: Radek Kaňa, Peter J. Nixon, Jianfeng Yu, Jaroslav Krafl, Vendula Krynická, Martin Tichý, Marko Boehm, Josef Komenda
Rok vydání: 2014
Předmět:
Zdroj: Molecular Microbiology. 94:609-624
ISSN: 0950-382X
DOI: 10.1111/mmi.12782
Popis: The cyanobacterium Synechocystis sp. PCC 6803 expresses four different FtsH protease subunits (FtsH1-4) that assemble into specific homo- and heterocomplexes. The FtsH2/FtsH3 complex is involved in photoprotection but the physiological roles of the other complexes, notably the essential FtsH1/FtsH3 complex, remain unclear. Here we show that the FtsH1 and FtsH3 proteases are involved in the acclimation of cells to iron deficiency. A mutant conditionally depleted in FtsH3 was unable to induce normal expression of the IsiA chlorophyll-protein and FutA1 iron transporter upon iron deficiency due to a block in transcription, which is regulated by the Fur transcriptional repressor. Levels of Fur declined in the WT and the FtsH2 null mutant upon iron depletion but not in the FtsH3 downregulated strain. A similar stabilizing effect on Fur was also observed in a mutant conditionally depleted in the FtsH1 subunit. Moreover, a mutant overexpressing FtsH1 showed reduced levels of Fur and enhanced accumulation of both IsiA and FutA1 even under iron sufficiency. Analysis of GFP-tagged derivatives and biochemical fractionation supported a common location for FtsH1 and FtsH3 in the cytoplasmic membrane. Overall we propose that degradation of the Fur repressor mediated by the FtsH1/FtsH3 heterocomplex is critical for acclimation to iron depletion.
Databáze: OpenAIRE