Setting load limits for nutrients and suspended solids based upon seagrass depth-limit targets

Autor: Whitney C. Green, Joel S. Steward
Rok vydání: 2007
Předmět:
Zdroj: Estuaries and Coasts. 30:657-670
ISSN: 1559-2731
1559-2723
DOI: 10.1007/bf02841963
Popis: Total nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) loadings [log (kg ha−1 yr−1)] were regressed against seagrass depth limits (percent of depth-limit targets) to back-predict the load limits or allocations (kg ha−1 yr−1 or kg yr−1) necessary to meet targeted seagrass depth limits in the Indian River and Banana River (IRBR) lagoons, Florida. Because the load allocations can be applied as total maximum daily loads (TMDL) for the IRBR (U.S. Environmental Protection Agency mandate), the method and results are developed and presented toward that end. The regression analyses indicate that the range of surface-discharge load limits (nonpoint + point source), per watershed area, required to achieve the desired depth limits for seagrass in the IRBR are approximately 2.4–3.2 kg ha−1 yr−1 TN, 0.41–0.64 kg ha−1 yr−1 TP, and 48–64 kg ha−1 yr−1 TSS. This simple regression method may have application to other shallow estuarine lagoons or bays where seagrass growth is limited by light and water transparency, water transparency is strongly affected by watershed pollutant loadings, water residence times are sufficiently long to allow seagrass coverage to respond to and covary with total load inputs, and multiyear monitoring has yielded sufficient variability in both pollutant loadings and seagrass coverages to develop a statistically meaningful relationship.
Databáze: OpenAIRE