Popis: |
In 2016, an unprecedented Pseudo-nitzschia australis bloom in the Gulf of Maine led to the first shellfishery closures due to domoic acid in the region's history. In this paper, potential introduction routes of P. australis are explored through observations, a hydrodynamic model, and a Lagrangian particle tracking model. Based on particle tracking experiments, the most likely source of P. australis to the Gulf of Maine was the Scotian Shelf. However, in 2016, connectivity between the Scotian Shelf and the bloom region was not significantly different from the other years between 2012 and 2019, nor were temperature conditions more favorable for P. australis growth. Observations indicated changes on the Scotian Shelf in 2016 preceded the introduction of P. australis: increased bottom salinity and decreased surface salinity. The increased bottom salinity on the shelf may be linked to anomalously saline water observed near the coast of Maine in 2016 via transport through Northeast Channel. The changes in upstream water mass properties may be related to the introduction of P. australis, and could be the result of either increased influence of the Labrador Current or increased outflow from the Gulf of St. Lawrence. The ultimate source of P. australis remains unknown, although the species has previously been observed in the eastern North Atlantic, and connectivity across the ocean is possible via a subpolar route. Continued and increased monitoring is warranted to track interannual Pseudo-nitzschia persistence in the Gulf of Maine, and sampling on the Scotian Shelf should be conducted to map upstream P. australis populations. |