Inverse Scattering for the Magnetic Schrödinger Operator on Surfaces with Euclidean Ends
Autor: | Leo Tzou, Valter Pohjola |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Scattering Operator (physics) 010102 general mathematics Statistical and Nonlinear Physics Gauge (firearms) 01 natural sciences Connection (mathematics) Matrix (mathematics) 0103 physical sciences Euclidean geometry Inverse scattering problem 010307 mathematical physics 0101 mathematics Laplace operator Mathematical Physics Mathematical physics |
Zdroj: | Communications in Mathematical Physics. 356:107-142 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-017-2982-y |
Popis: | We prove a fixed frequency inverse scattering result for the magnetic Schrodinger operator (or connection Laplacian) on surfaces with Euclidean ends. We show that, under suitable decaying conditions, the scattering matrix for the operator determines both the gauge class of the connection and the zeroth order potential. |
Databáze: | OpenAIRE |
Externí odkaz: |