The structure of the crust and upper mantle to depths of 320 km beneath the Kaapvaal craton, from P wave arrivals generated by regional earthquakes and mining-induced tremors

Autor: E. M. Kgaswane, R. E. Simon, C. Wright, M. T. O. Kwadiba
Rok vydání: 2002
Předmět:
Zdroj: Journal of African Earth Sciences. 35:477-488
ISSN: 1464-343X
DOI: 10.1016/s0899-5362(02)00157-4
Popis: Travel times from earthquakes recorded at two seismic networks were used to derive an average P wavespeed model for the crust and upper mantle to depths of 320 km below southern Africa. The simplest model (BPI1) has a Moho depth of 34 km, and an uppermost mantle wavespeed of 8.04 km/s, below which the seismic wavespeeds have low positive gradients. Wavespeed gradients decrease slightly around 150 km depth to give a ‘knee’ in the wavespeed-depth model, and the wavespeed reaches 8.72 km/s at a depth of 320 km. Between the Moho and depths of 270 km, the seismic wavespeeds lie above those of reference model IASP91 of Kennett [Research School of Earth Sciences, Australian National University, Canberra, Australia (1991)] and below the southern African model of Zhao et al. [Journal of Geophysical Research 104 (1999) 4783]. At depths near 300 km all three models have similar wavespeeds. The mantle P wavespeeds for southern Africa of Qiu et al. [Geophysical Journal International 127 (1996) 563] lie close to BPI1 at depths between 40 and 140 km, but become lower at greater depths. The seismic wavespeeds in the upper mantle of model BPI1 agree satisfactorily with those estimated from peridotite xenoliths in kimberlites from within the Kaapvaal craton. The crustal thickness of 34 km of model BPI1 is systematically lower than the average thickness of 41 km computed over the same region from receiver functions. This discrepancy can be partly explained by an alternative model (BPI2) in which there is a crust–mantle transition zone between depths of 35 and 47 km, below which seismic wavespeed increases to 8.23 km/s. A low-wavespeed layer is then required at depths between 65 and 125 km.
Databáze: OpenAIRE