On critical values of twisted Artin $L$-functions
Autor: | Peng-Jie Wong |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
010102 general mathematics Field (mathematics) 01 natural sciences Conductor Combinatorics Artin approximation theorem symbols.namesake Character (mathematics) Simple (abstract algebra) Gauss sum 0103 physical sciences Artin L-function symbols 010307 mathematical physics Artin reciprocity law 0101 mathematics Mathematics |
Zdroj: | Czechoslovak Mathematical Journal. 67:551-555 |
DOI: | 10.21136/cmj.2017.0134-16 |
Popis: | We give a simple proof that critical values of any Artin L-function attached to a representation l with character χl are stable under twisting by a totally even character χ, up to the dim l-th power of the Gauss sum related to χ and an element in the field generated by the values of χl and χ over Q. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward. |
Databáze: | OpenAIRE |
Externí odkaz: |