Search for pair-production of vector-like quarks in $pp$ collision events at $\sqrt{s}=13$ TeV with at least one leptonically decaying $Z$ boson and a third-generation quark with the ATLAS detector

+Z0+top%22&type=SU">quark --> Z0 top, quark: vector particle, doublet, final state: ((n)jet 3lepton), quark: postulated particle, final state: ((n)jet dilepton), background, family: 3, singlet, ATLAS, calibration, sensitivity, quark: pair production, CERN LHC Coll, jet: transverse momentum: high, top: particle identification, quark --> Z0 bottom, Z0: transverse momentum, Z0: leptonic decay, quark: decay modes, branching ratio, jet: bottom, p p: colliding beams, quark: mass: lower limit, experimental results -->
Popis: A search for the pair-production of vector-like quarks optimized for decays into a $Z$ boson and a third-generation Standard Model quark is presented, using the full Run 2 dataset corresponding to 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV, collected in 2015-2018 with the ATLAS detector at the Large Hadron Collider. The targeted final state is characterized by the presence of a $Z$ boson with high transverse momentum, reconstructed from a pair of same-flavour leptons with opposite-sign charges, as well as by the presence of $b$-tagged jets and high-transverse-momentum large-radius jets reconstructed from calibrated smaller-radius jets. Events with exactly two or at least three leptons are used, which are further categorized by the presence of boosted $W$, $Z$, and Higgs bosons and top quarks. The categorization is performed using a neural-network-based boosted object tagger to enhance the sensitivity to signal relative to the background. No significant excess above the background expectation is observed and exclusion limits at 95% confidence level are set on the masses of the vector-like partners $T$ and $B$ of the top and bottom quarks, respectively. In the singlet model, the limits allow $m_T > 1.27$ TeV and $m_B > 1.20$ TeV. In the doublet model, allowed masses are $m_T > 1.46$ TeV and $m_B >1.32$ TeV. In the case of 100% branching ratio for $T\rightarrow Zt$ and 100% branching ratio for $B\rightarrow Zb$, the limits allow $m_T > 1.60$ TeV and $m_B > 1.42$ TeV, respectively.
Jazyk: English
DOI: 10.3204/pubdb-2022-06839
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_________::0d9016930a01a01f07507f2b57dfc6c2
Přírůstkové číslo: edsair.doi...........0d9016930a01a01f07507f2b57dfc6c2
Autor: ATLAS Collaboration
Jazyk: angličtina
Rok vydání: 2022
Předmět:
DOI: 10.3204/pubdb-2022-06839
Popis: A search for the pair-production of vector-like quarks optimized for decays into a $Z$ boson and a third-generation Standard Model quark is presented, using the full Run 2 dataset corresponding to 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV, collected in 2015-2018 with the ATLAS detector at the Large Hadron Collider. The targeted final state is characterized by the presence of a $Z$ boson with high transverse momentum, reconstructed from a pair of same-flavour leptons with opposite-sign charges, as well as by the presence of $b$-tagged jets and high-transverse-momentum large-radius jets reconstructed from calibrated smaller-radius jets. Events with exactly two or at least three leptons are used, which are further categorized by the presence of boosted $W$, $Z$, and Higgs bosons and top quarks. The categorization is performed using a neural-network-based boosted object tagger to enhance the sensitivity to signal relative to the background. No significant excess above the background expectation is observed and exclusion limits at 95% confidence level are set on the masses of the vector-like partners $T$ and $B$ of the top and bottom quarks, respectively. In the singlet model, the limits allow $m_T > 1.27$ TeV and $m_B > 1.20$ TeV. In the doublet model, allowed masses are $m_T > 1.46$ TeV and $m_B >1.32$ TeV. In the case of 100% branching ratio for $T\rightarrow Zt$ and 100% branching ratio for $B\rightarrow Zb$, the limits allow $m_T > 1.60$ TeV and $m_B > 1.42$ TeV, respectively.
Databáze: OpenAIRE