Autor: |
Mike Vitalich, B. Hatch, Brad Petre, Steven Ross, Stacie Manuel, J. Galbraith, Phil Datte, B. Molander, Dan Manha, George Swadling |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
SPIE Proceedings. |
ISSN: |
0277-786X |
DOI: |
10.1117/12.2237906 |
Popis: |
The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Inertial Confinement Fusion program based on laser-target interactions. The Optical Thomson Scattering (OTS) diagnostic has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. A deep-UV probe beam is needed to overcome the large background of self-Thomson scattering produced by the 351nm (3ω) NIF drive beams. A two-phase approach to OTS on NIF will mitigate the risk presented by background levels. In Phase I, the diagnostic will assess background levels around a potential deep-UV probe wavelength considered for 5ω Thomson scattering measurements to be conducted in Phase II. The Phase I design of the diagnostic includes an unobscured collection telescope, dual crossed Czerny-Turner spectrometers, and the shared use of one streak camera located inside of an airbox. The Phase II design will include a 5ω probe laser. We will describe the engineering design and concept of operations of the Phase I NIF OTS diagnostic, with a focus on optomechanical disciplines. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|