A variational principle for Kaluza–Klein types theories
Autor: | Frédéric Hélein |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Advances in Theoretical and Mathematical Physics. 24:305-326 |
ISSN: | 1095-0753 1095-0761 |
DOI: | 10.4310/atmp.2020.v24.n2.a3 |
Popis: | For any positive integer n and any Lie group G, given a definite symmetric bilinear form on R n and an Ad-invariant scalar product on the Lie algebra of G, we construct a variational problem on fields defined on an arbitrary (n + dimG)-dimensional manifold Y. We show that, if G is compact and simply connected, any global solution of the Euler-Lagrange equations leads to identify Y with the total space of a principal bundle over an n-dimensional manifold X. Moreover X is automatically endowed with a (pseudo-)Riemannian metric and a connection which are solutions of the Einstein-Yang-Mills system equation with a cosmological constant. |
Databáze: | OpenAIRE |
Externí odkaz: |