Robust Fusion for Multisensor Multiobject Tracking
Autor: | Claudio Fantacci, Luigi Chisci, Ba-Ngu Vo, Giorgio Battistelli, Ba-Tuong Vo |
---|---|
Rok vydání: | 2018 |
Předmět: |
Fusion
business.industry Computer science Applied Mathematics Computer Science::Neural and Evolutionary Computation 020206 networking & telecommunications Pattern recognition 02 engineering and technology Robustness (computer science) Signal Processing 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Artificial intelligence Electrical and Electronic Engineering business |
Zdroj: | IEEE Signal Processing Letters. 25:640-644 |
ISSN: | 1558-2361 1070-9908 |
DOI: | 10.1109/lsp.2018.2811750 |
Popis: | This letter proposes analytical expressions for the fusion of certain classes of labeled multiobject densities via Kullback–Leibler averaging. Specifically, we provide analytical fusion rules for the labeled multi-Bernoulli and marginalized $\delta$ -generalized labeled multi-Bernoulli families of labeled multiobject densities. Information fusion via Kullback–Leibler averaging ensures immunity to double counting of information and is essential to the development of effective multiagent multiobject estimation. |
Databáze: | OpenAIRE |
Externí odkaz: |