How Uncertainty in Field Measurements of Ice Nucleating Particles Influences Modeled Cloud Forcing
Autor: | Martin J. Wolf, Chien Wang, Daniel J. Cziczo, Sarvesh Garimella, Daniel Rothenberg |
---|---|
Rok vydání: | 2018 |
Předmět: |
Cloud forcing
Atmospheric Science 010504 meteorology & atmospheric sciences Ice crystals Longwave Climate change Weather and climate 010502 geochemistry & geophysics Atmospheric sciences 01 natural sciences Climatology Range (statistics) Measurement uncertainty Environmental science Diffusion (business) 0105 earth and related environmental sciences |
Zdroj: | Journal of the Atmospheric Sciences. 75:179-187 |
ISSN: | 1520-0469 0022-4928 |
DOI: | 10.1175/jas-d-17-0089.1 |
Popis: | Field and laboratory measurements using continuous flow diffusion chambers (CFDCs) have been used to construct parameterizations of the number of ice nucleating particles (INPs) in mixed-phase and completely glaciated clouds in weather and climate models. Because of flow nonidealities, CFDC measurements are subject to systematic low biases. Here, the authors investigate the effects of this undercounting bias on simulated cloud forcing in a global climate model. The authors assess the influence of measurement variability by constructing a stochastic parameterization framework to endogenize measurement uncertainty. The authors find that simulated anthropogenic longwave ice-bearing cloud forcing in a global climate model can vary up to 0.8 W m−2and can change sign from positive to negative within the experimentally constrained bias range. Considering the variability in the undercounting bias, in a range consistent with recent experiments, leads to a larger negative cloud forcing than that when the variability is ignored and only a constant bias is assumed. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |