Popis: |
We present Sparse Numerical Array-Based Range Filters (SNARF), a learned range filter that efficiently supports range queries for numerical data. SNARF creates a model of the data distribution to map the keys into a bit array which is stored in a compressed form. The model along with the compressed bit array which constitutes SNARF are used to answer membership queries. We evaluate SNARF on multiple synthetic and real-world datasets as a stand-alone filter and by integrating it into RocksDB. For range queries, SNARF provides up to 50x better false positive rate than state-of-the-art range filters, such as SuRF and Rosetta, with the same space usage. We also evaluate SNARF in RocksDB as a filter replacement for filtering requests before they access on-disk data structures. For RocksDB, SNARF can improve the execution time of the system up to 10x compared to SuRF and Rosetta for certain read-only workloads. |