Topological degree methods for a Neumann problem governed by nonlinear elliptic equation

Autor: Adil Abbassi, Abderrazak Kassidi, Chakir Allalou
Rok vydání: 2020
Předmět:
Zdroj: Moroccan Journal of Pure and Applied Analysis. 6:231-242
ISSN: 2351-8227
DOI: 10.2478/mjpaa-2020-0018
Popis: In this paper, we will use the topological degree, introduced by Berkovits, to prove existence of weak solutions to a Neumann boundary value problems for the following nonlinear elliptic equation - d i v a ( x , u , ∇ u ) = b ( x ) | u | p - 2 u + λ H ( x , u , ∇ u ) , - div\,\,a\left( {x,u,\nabla u} \right) = b\left( x \right){\left| u \right|^{p - 2}}u + \lambda H\left( {x,u,\nabla u} \right), where Ω is a bounded smooth domain of 𝕉 N .
Databáze: OpenAIRE