Popis: |
The properties of the mineral wool mat are determined by the mode of heat treatment and properties of the products. The main parameter to assess the properties of highly porous fibrous material is its resistance to the air flow, which can be estimated by the value of the hydraulic resistance. This parameter includes both the characteristics of the mineral fiber (diameter, length, density) characteristics of the system as a whole (total porosity, average density, the content of fibrous inclusions) and gas environment parameters (temperature and speed of its motion through the porous layer). Characteristics of the gaseous medium are technological factors, which influence the material during the heat treatment, and hence optimization of the process parameters. The flow of gas through the perforated wall of the hole determined by characteristics, pressurized inside a rolling pin, and the structural characteristics of the mineral geometrical cylinder and his hydraulic resistance. So, a universal criterion, which measures the mass transfer efficiency and hence the effectiveness of the heat treatment, is a hydraulic resistance cylinder. The study of the processes occurring in the mineral wool carpet, showed that its hydraulic resistance is directly proportional to the surface of fibers per unit bed volume and inversely proportional to the third degree of porosity of the layer. Researches have shown that increasing the degree of perforation increases the uneven distribution. However, if total power increases 1.87 times, because the perforation through the inlet portion perforation of rolling pin was disclosure, substantially uniform distribution was achieved. The investigations led to the following conclusions: the specific surface layer has a linear dependence on its average density; hydraulic resistance of the layer will be greater, when the amount of beads and fibers diameter is smaller. The obtained exact dependence allows calculating the hydraulic resistance to the flow of gas in the cylinder mineral wool. This allows taking into account the parameters of a rolling pin and the intensity of its expiration coolant, optimize its heat treatment parameters, as well as to assess patterns to filter of vapor during operation in the heating cylinder. |