Global Existence and Long-Time Behavior of Solutions to the Full Compressible Euler Equations with Damping and Heat Conduction in ℝ3
Autor: | Wu, Yunshun, Wang, Yong, Shen, Rong |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Advances in Mathematical Physics, Vol 2021 (2021) |
ISSN: | 1687-9139 1687-9120 |
Popis: | We study the Cauchy problem of the three-dimensional full compressible Euler equations with damping and heat conduction. We prove the existence and uniqueness of the global small HNN≥3 solution; in particular, we only require that the H4 norms of the initial data be small when N≥5. Moreover, we use a pure energy method to show that the global solution converges to the constant equilibrium state with an optimal algebraic decay rate as time goes to infinity. |
Databáze: | OpenAIRE |
Externí odkaz: |